This is the multi-page printable view of this section. Click here to print.

Return to the regular view of this page.

  • 1:
  • 2:
  • 3:
  • 4:
  • 5:
  • 6:
  • 7:
  • 8:
  • 9:
  • 10:
  • 11:
  • 12:
  • 13:
  • 14:

Run this on any machine you wish to join an existing cluster

Synopsis

When joining a kubeadm initialized cluster, we need to establish bidirectional trust. This is split into discovery (having the Node trust the Kubernetes Control Plane) and TLS bootstrap (having the Kubernetes Control Plane trust the Node).

There are 2 main schemes for discovery. The first is to use a shared token along with the IP address of the API server. The second is to provide a file - a subset of the standard kubeconfig file. The discovery/kubeconfig file supports token, client-go authentication plugins ("exec"), "tokenFile", and "authProvider". This file can be a local file or downloaded via an HTTPS URL. The forms are kubeadm join --discovery-token abcdef.1234567890abcdef 1.2.3.4:6443, kubeadm join --discovery-file path/to/file.conf, or kubeadm join --discovery-file https://url/file.conf. Only one form can be used. If the discovery information is loaded from a URL, HTTPS must be used. Also, in that case the host installed CA bundle is used to verify the connection.

If you use a shared token for discovery, you should also pass the --discovery-token-ca-cert-hash flag to validate the public key of the root certificate authority (CA) presented by the Kubernetes Control Plane. The value of this flag is specified as "<hash-type>:<hex-encoded-value>", where the supported hash type is "sha256". The hash is calculated over the bytes of the Subject Public Key Info (SPKI) object (as in RFC7469). This value is available in the output of "kubeadm init" or can be calculated using standard tools. The --discovery-token-ca-cert-hash flag may be repeated multiple times to allow more than one public key.

If you cannot know the CA public key hash ahead of time, you can pass the --discovery-token-unsafe-skip-ca-verification flag to disable this verification. This weakens the kubeadm security model since other nodes can potentially impersonate the Kubernetes Control Plane.

The TLS bootstrap mechanism is also driven via a shared token. This is used to temporarily authenticate with the Kubernetes Control Plane to submit a certificate signing request (CSR) for a locally created key pair. By default, kubeadm will set up the Kubernetes Control Plane to automatically approve these signing requests. This token is passed in with the --tls-bootstrap-token abcdef.1234567890abcdef flag.

Often times the same token is used for both parts. In this case, the --token flag can be used instead of specifying each token individually.

The "join [api-server-endpoint]" command executes the following phases:

preflight              Run join pre-flight checks
control-plane-prepare  Prepare the machine for serving a control plane
  /download-certs        Download certificates shared among control-plane nodes from the kubeadm-certs Secret
  /certs                 Generate the certificates for the new control plane components
  /kubeconfig            Generate the kubeconfig for the new control plane components
  /control-plane         Generate the manifests for the new control plane components
kubelet-start          Write kubelet settings, certificates and (re)start the kubelet
control-plane-join     Join a machine as a control plane instance
  /etcd                  Add a new local etcd member
  /mark-control-plane    Mark a node as a control-plane
wait-control-plane     EXPERIMENTAL: Wait for the control plane to start
kubeadm join [api-server-endpoint] [flags]

Options

--apiserver-advertise-address string

If the node should host a new control plane instance, the IP address the API Server will advertise it's listening on. If not set the default network interface will be used.

--apiserver-bind-port int32     Default: 6443

If the node should host a new control plane instance, the port for the API Server to bind to.

--certificate-key string

Use this key to decrypt the certificate secrets uploaded by init. The certificate key is a hex encoded string that is an AES key of size 32 bytes.

--config string

Path to a kubeadm configuration file.

--control-plane

Create a new control plane instance on this node

--cri-socket string

Path to the CRI socket to connect. If empty kubeadm will try to auto-detect this value; use this option only if you have more than one CRI installed or if you have non-standard CRI socket.

--discovery-file string

For file-based discovery, a file or URL from which to load cluster information.

--discovery-token string

For token-based discovery, the token used to validate cluster information fetched from the API server.

--discovery-token-ca-cert-hash strings

For token-based discovery, validate that the root CA public key matches this hash (format: "<type>:<value>").

--discovery-token-unsafe-skip-ca-verification

For token-based discovery, allow joining without --discovery-token-ca-cert-hash pinning.

--dry-run

Don't apply any changes; just output what would be done.

-h, --help

help for join

--ignore-preflight-errors strings

A list of checks whose errors will be shown as warnings. Example: 'IsPrivilegedUser,Swap'. Value 'all' ignores errors from all checks.

--node-name string

Specify the node name.

--patches string

Path to a directory that contains files named "target[suffix][+patchtype].extension". For example, "kube-apiserver0+merge.yaml" or just "etcd.json". "target" can be one of "kube-apiserver", "kube-controller-manager", "kube-scheduler", "etcd", "kubeletconfiguration", "corednsdeployment". "patchtype" can be one of "strategic", "merge" or "json" and they match the patch formats supported by kubectl. The default "patchtype" is "strategic". "extension" must be either "json" or "yaml". "suffix" is an optional string that can be used to determine which patches are applied first alpha-numerically.

--skip-phases strings

List of phases to be skipped

--tls-bootstrap-token string

Specify the token used to temporarily authenticate with the Kubernetes Control Plane while joining the node.

--token string

Use this token for both discovery-token and tls-bootstrap-token when those values are not provided.

Options inherited from parent commands

--rootfs string

The path to the 'real' host root filesystem. This will cause kubeadm to chroot into the provided path.

1 -

Use this command to invoke single phase of the join workflow

Synopsis

Use this command to invoke single phase of the join workflow

Options

-h, --help

help for phase

Options inherited from parent commands

--rootfs string

The path to the 'real' host root filesystem. This will cause kubeadm to chroot into the provided path.

2 -

Join a machine as a control plane instance

Synopsis

Join a machine as a control plane instance

kubeadm join phase control-plane-join [flags]

Examples

  # Joins a machine as a control plane instance
  kubeadm join phase control-plane-join all

Options

-h, --help

help for control-plane-join

Options inherited from parent commands

--rootfs string

The path to the 'real' host root filesystem. This will cause kubeadm to chroot into the provided path.

3 -

Join a machine as a control plane instance

Synopsis

Join a machine as a control plane instance

kubeadm join phase control-plane-join all [flags]

Options

--apiserver-advertise-address string

If the node should host a new control plane instance, the IP address the API Server will advertise it's listening on. If not set the default network interface will be used.

--config string

Path to a kubeadm configuration file.

--control-plane

Create a new control plane instance on this node

--dry-run

Don't apply any changes; just output what would be done.

-h, --help

help for all

--node-name string

Specify the node name.

--patches string

Path to a directory that contains files named "target[suffix][+patchtype].extension". For example, "kube-apiserver0+merge.yaml" or just "etcd.json". "target" can be one of "kube-apiserver", "kube-controller-manager", "kube-scheduler", "etcd", "kubeletconfiguration", "corednsdeployment". "patchtype" can be one of "strategic", "merge" or "json" and they match the patch formats supported by kubectl. The default "patchtype" is "strategic". "extension" must be either "json" or "yaml". "suffix" is an optional string that can be used to determine which patches are applied first alpha-numerically.

Options inherited from parent commands

--rootfs string

The path to the 'real' host root filesystem. This will cause kubeadm to chroot into the provided path.

4 -

Add a new local etcd member

Synopsis

Add a new local etcd member

kubeadm join phase control-plane-join etcd [flags]

Options

--apiserver-advertise-address string

If the node should host a new control plane instance, the IP address the API Server will advertise it's listening on. If not set the default network interface will be used.

--config string

Path to a kubeadm configuration file.

--control-plane

Create a new control plane instance on this node

--dry-run

Don't apply any changes; just output what would be done.

-h, --help

help for etcd

--node-name string

Specify the node name.

--patches string

Path to a directory that contains files named "target[suffix][+patchtype].extension". For example, "kube-apiserver0+merge.yaml" or just "etcd.json". "target" can be one of "kube-apiserver", "kube-controller-manager", "kube-scheduler", "etcd", "kubeletconfiguration", "corednsdeployment". "patchtype" can be one of "strategic", "merge" or "json" and they match the patch formats supported by kubectl. The default "patchtype" is "strategic". "extension" must be either "json" or "yaml". "suffix" is an optional string that can be used to determine which patches are applied first alpha-numerically.

Options inherited from parent commands

--rootfs string

The path to the 'real' host root filesystem. This will cause kubeadm to chroot into the provided path.

5 -

Mark a node as a control-plane

Synopsis

Mark a node as a control-plane

kubeadm join phase control-plane-join mark-control-plane [flags]

Options

--config string

Path to a kubeadm configuration file.

--control-plane

Create a new control plane instance on this node

--dry-run

Don't apply any changes; just output what would be done.

-h, --help

help for mark-control-plane

--node-name string

Specify the node name.

Options inherited from parent commands

--rootfs string

The path to the 'real' host root filesystem. This will cause kubeadm to chroot into the provided path.

6 -

Prepare the machine for serving a control plane

Synopsis

Prepare the machine for serving a control plane

kubeadm join phase control-plane-prepare [flags]

Examples

  # Prepares the machine for serving a control plane
  kubeadm join phase control-plane-prepare all

Options

-h, --help

help for control-plane-prepare

Options inherited from parent commands

--rootfs string

The path to the 'real' host root filesystem. This will cause kubeadm to chroot into the provided path.

7 -

Prepare the machine for serving a control plane

Synopsis

Prepare the machine for serving a control plane

kubeadm join phase control-plane-prepare all [api-server-endpoint] [flags]

Options

--apiserver-advertise-address string

If the node should host a new control plane instance, the IP address the API Server will advertise it's listening on. If not set the default network interface will be used.

--apiserver-bind-port int32     Default: 6443

If the node should host a new control plane instance, the port for the API Server to bind to.

--certificate-key string

Use this key to decrypt the certificate secrets uploaded by init. The certificate key is a hex encoded string that is an AES key of size 32 bytes.

--config string

Path to a kubeadm configuration file.

--control-plane

Create a new control plane instance on this node

--discovery-file string

For file-based discovery, a file or URL from which to load cluster information.

--discovery-token string

For token-based discovery, the token used to validate cluster information fetched from the API server.

--discovery-token-ca-cert-hash strings

For token-based discovery, validate that the root CA public key matches this hash (format: "<type>:<value>").

--discovery-token-unsafe-skip-ca-verification

For token-based discovery, allow joining without --discovery-token-ca-cert-hash pinning.

--dry-run

Don't apply any changes; just output what would be done.

-h, --help

help for all

--node-name string

Specify the node name.

--patches string

Path to a directory that contains files named "target[suffix][+patchtype].extension". For example, "kube-apiserver0+merge.yaml" or just "etcd.json". "target" can be one of "kube-apiserver", "kube-controller-manager", "kube-scheduler", "etcd", "kubeletconfiguration", "corednsdeployment". "patchtype" can be one of "strategic", "merge" or "json" and they match the patch formats supported by kubectl. The default "patchtype" is "strategic". "extension" must be either "json" or "yaml". "suffix" is an optional string that can be used to determine which patches are applied first alpha-numerically.

--tls-bootstrap-token string

Specify the token used to temporarily authenticate with the Kubernetes Control Plane while joining the node.

--token string

Use this token for both discovery-token and tls-bootstrap-token when those values are not provided.

Options inherited from parent commands

--rootfs string

The path to the 'real' host root filesystem. This will cause kubeadm to chroot into the provided path.

8 -

Generate the certificates for the new control plane components

Synopsis

Generate the certificates for the new control plane components

kubeadm join phase control-plane-prepare certs [api-server-endpoint] [flags]

Options

--apiserver-advertise-address string

If the node should host a new control plane instance, the IP address the API Server will advertise it's listening on. If not set the default network interface will be used.

--config string

Path to a kubeadm configuration file.

--control-plane

Create a new control plane instance on this node

--discovery-file string

For file-based discovery, a file or URL from which to load cluster information.

--discovery-token string

For token-based discovery, the token used to validate cluster information fetched from the API server.

--discovery-token-ca-cert-hash strings

For token-based discovery, validate that the root CA public key matches this hash (format: "<type>:<value>").

--discovery-token-unsafe-skip-ca-verification

For token-based discovery, allow joining without --discovery-token-ca-cert-hash pinning.

--dry-run

Don't apply any changes; just output what would be done.

-h, --help

help for certs

--node-name string

Specify the node name.

--tls-bootstrap-token string

Specify the token used to temporarily authenticate with the Kubernetes Control Plane while joining the node.

--token string

Use this token for both discovery-token and tls-bootstrap-token when those values are not provided.

Options inherited from parent commands

--rootfs string

The path to the 'real' host root filesystem. This will cause kubeadm to chroot into the provided path.

9 -

Generate the manifests for the new control plane components

Synopsis

Generate the manifests for the new control plane components

kubeadm join phase control-plane-prepare control-plane [flags]

Options

--apiserver-advertise-address string

If the node should host a new control plane instance, the IP address the API Server will advertise it's listening on. If not set the default network interface will be used.

--apiserver-bind-port int32     Default: 6443

If the node should host a new control plane instance, the port for the API Server to bind to.

--config string

Path to a kubeadm configuration file.

--control-plane

Create a new control plane instance on this node

--dry-run

Don't apply any changes; just output what would be done.

-h, --help

help for control-plane

--patches string

Path to a directory that contains files named "target[suffix][+patchtype].extension". For example, "kube-apiserver0+merge.yaml" or just "etcd.json". "target" can be one of "kube-apiserver", "kube-controller-manager", "kube-scheduler", "etcd", "kubeletconfiguration", "corednsdeployment". "patchtype" can be one of "strategic", "merge" or "json" and they match the patch formats supported by kubectl. The default "patchtype" is "strategic". "extension" must be either "json" or "yaml". "suffix" is an optional string that can be used to determine which patches are applied first alpha-numerically.

Options inherited from parent commands

--rootfs string

The path to the 'real' host root filesystem. This will cause kubeadm to chroot into the provided path.

10 -

Download certificates shared among control-plane nodes from the kubeadm-certs Secret

Synopsis

Download certificates shared among control-plane nodes from the kubeadm-certs Secret

kubeadm join phase control-plane-prepare download-certs [api-server-endpoint] [flags]

Options

--certificate-key string

Use this key to decrypt the certificate secrets uploaded by init. The certificate key is a hex encoded string that is an AES key of size 32 bytes.

--config string

Path to a kubeadm configuration file.

--control-plane

Create a new control plane instance on this node

--discovery-file string

For file-based discovery, a file or URL from which to load cluster information.

--discovery-token string

For token-based discovery, the token used to validate cluster information fetched from the API server.

--discovery-token-ca-cert-hash strings

For token-based discovery, validate that the root CA public key matches this hash (format: "<type>:<value>").

--discovery-token-unsafe-skip-ca-verification

For token-based discovery, allow joining without --discovery-token-ca-cert-hash pinning.

--dry-run

Don't apply any changes; just output what would be done.

-h, --help

help for download-certs

--tls-bootstrap-token string

Specify the token used to temporarily authenticate with the Kubernetes Control Plane while joining the node.

--token string

Use this token for both discovery-token and tls-bootstrap-token when those values are not provided.

Options inherited from parent commands

--rootfs string

The path to the 'real' host root filesystem. This will cause kubeadm to chroot into the provided path.

11 -

Generate the kubeconfig for the new control plane components

Synopsis

Generate the kubeconfig for the new control plane components

kubeadm join phase control-plane-prepare kubeconfig [api-server-endpoint] [flags]

Options

--certificate-key string

Use this key to decrypt the certificate secrets uploaded by init. The certificate key is a hex encoded string that is an AES key of size 32 bytes.

--config string

Path to a kubeadm configuration file.

--control-plane

Create a new control plane instance on this node

--discovery-file string

For file-based discovery, a file or URL from which to load cluster information.

--discovery-token string

For token-based discovery, the token used to validate cluster information fetched from the API server.

--discovery-token-ca-cert-hash strings

For token-based discovery, validate that the root CA public key matches this hash (format: "<type>:<value>").

--discovery-token-unsafe-skip-ca-verification

For token-based discovery, allow joining without --discovery-token-ca-cert-hash pinning.

--dry-run

Don't apply any changes; just output what would be done.

-h, --help

help for kubeconfig

--tls-bootstrap-token string

Specify the token used to temporarily authenticate with the Kubernetes Control Plane while joining the node.

--token string

Use this token for both discovery-token and tls-bootstrap-token when those values are not provided.

Options inherited from parent commands

--rootfs string

The path to the 'real' host root filesystem. This will cause kubeadm to chroot into the provided path.

12 -

Write kubelet settings, certificates and (re)start the kubelet

Synopsis

Write a file with KubeletConfiguration and an environment file with node specific kubelet settings, and then (re)start kubelet.

kubeadm join phase kubelet-start [api-server-endpoint] [flags]

Options

--config string

Path to a kubeadm configuration file.

--cri-socket string

Path to the CRI socket to connect. If empty kubeadm will try to auto-detect this value; use this option only if you have more than one CRI installed or if you have non-standard CRI socket.

--discovery-file string

For file-based discovery, a file or URL from which to load cluster information.

--discovery-token string

For token-based discovery, the token used to validate cluster information fetched from the API server.

--discovery-token-ca-cert-hash strings

For token-based discovery, validate that the root CA public key matches this hash (format: "<type>:<value>").

--discovery-token-unsafe-skip-ca-verification

For token-based discovery, allow joining without --discovery-token-ca-cert-hash pinning.

--dry-run

Don't apply any changes; just output what would be done.

-h, --help

help for kubelet-start

--node-name string

Specify the node name.

--patches string

Path to a directory that contains files named "target[suffix][+patchtype].extension". For example, "kube-apiserver0+merge.yaml" or just "etcd.json". "target" can be one of "kube-apiserver", "kube-controller-manager", "kube-scheduler", "etcd", "kubeletconfiguration", "corednsdeployment". "patchtype" can be one of "strategic", "merge" or "json" and they match the patch formats supported by kubectl. The default "patchtype" is "strategic". "extension" must be either "json" or "yaml". "suffix" is an optional string that can be used to determine which patches are applied first alpha-numerically.

--tls-bootstrap-token string

Specify the token used to temporarily authenticate with the Kubernetes Control Plane while joining the node.

--token string

Use this token for both discovery-token and tls-bootstrap-token when those values are not provided.

Options inherited from parent commands

--rootfs string

The path to the 'real' host root filesystem. This will cause kubeadm to chroot into the provided path.

13 -

Run join pre-flight checks

Synopsis

Run pre-flight checks for kubeadm join.

kubeadm join phase preflight [api-server-endpoint] [flags]

Examples

  # Run join pre-flight checks using a config file.
  kubeadm join phase preflight --config kubeadm-config.yaml

Options

--apiserver-advertise-address string

If the node should host a new control plane instance, the IP address the API Server will advertise it's listening on. If not set the default network interface will be used.

--apiserver-bind-port int32     Default: 6443

If the node should host a new control plane instance, the port for the API Server to bind to.

--certificate-key string

Use this key to decrypt the certificate secrets uploaded by init. The certificate key is a hex encoded string that is an AES key of size 32 bytes.

--config string

Path to a kubeadm configuration file.

--control-plane

Create a new control plane instance on this node

--cri-socket string

Path to the CRI socket to connect. If empty kubeadm will try to auto-detect this value; use this option only if you have more than one CRI installed or if you have non-standard CRI socket.

--discovery-file string

For file-based discovery, a file or URL from which to load cluster information.

--discovery-token string

For token-based discovery, the token used to validate cluster information fetched from the API server.

--discovery-token-ca-cert-hash strings

For token-based discovery, validate that the root CA public key matches this hash (format: "<type>:<value>").

--discovery-token-unsafe-skip-ca-verification

For token-based discovery, allow joining without --discovery-token-ca-cert-hash pinning.

--dry-run

Don't apply any changes; just output what would be done.

-h, --help

help for preflight

--ignore-preflight-errors strings

A list of checks whose errors will be shown as warnings. Example: 'IsPrivilegedUser,Swap'. Value 'all' ignores errors from all checks.

--node-name string

Specify the node name.

--tls-bootstrap-token string

Specify the token used to temporarily authenticate with the Kubernetes Control Plane while joining the node.

--token string

Use this token for both discovery-token and tls-bootstrap-token when those values are not provided.

Options inherited from parent commands

--rootfs string

The path to the 'real' host root filesystem. This will cause kubeadm to chroot into the provided path.

14 -

EXPERIMENTAL: Wait for the control plane to start

Synopsis

EXPERIMENTAL: Wait for the control plane to start

kubeadm join phase wait-control-plane [flags]

Options

-h, --help

help for wait-control-plane

Options inherited from parent commands

--rootfs string

The path to the 'real' host root filesystem. This will cause kubeadm to chroot into the provided path.