Пакування ресурсів

У scheduling-plugin NodeResourcesFit kube-scheduler є дві стратегії оцінювання, які підтримують пакування ресурсів: MostAllocated та RequestedToCapacityRatio.

Включення пакування ресурсів за допомогою стратегії MostAllocated

Стратегія MostAllocated оцінює вузли на основі використання ресурсів, віддаючи перевагу тим, у яких використання вище. Для кожного типу ресурсів ви можете встановити коефіцієнт, щоб змінити його вплив на оцінку вузла.

Щоб встановити стратегію MostAllocated для втулка NodeResourcesFit, використовуйте конфігурацію планувальника подібну до наступної:

apiVersion: kubescheduler.config.k8s.io/v1
kind: KubeSchedulerConfiguration
profiles:
- pluginConfig:
  - args:
      scoringStrategy:
        resources:
        - name: cpu
          weight: 1
        - name: memory
          weight: 1
        - name: intel.com/foo
          weight: 3
        - name: intel.com/bar
          weight: 3
        type: MostAllocated
    name: NodeResourcesFit

Щоб дізнатися більше про інші параметри та їх стандартну конфігурацію, див. документацію API для NodeResourcesFitArgs.

Включення пакування ресурсів за допомогою стратегії RequestedToCapacityRatio

Стратегія RequestedToCapacityRatio дозволяє користувачам вказати ресурси разом з коефіцієнтами для кожного ресурсу для оцінювання вузлів на основі відношення запиту до потужності. Це дозволяє користувачам пакувати розширені ресурси, використовуючи відповідні параметри для покращення використання рідкісних ресурсів у великих кластерах. Вона віддає перевагу вузлам згідно з налаштованою функцією виділених ресурсів. Поведінку RequestedToCapacityRatio в функції оцінювання NodeResourcesFit можна керувати за допомогою поля scoringStrategy. У межах поля scoringStrategy ви можете налаштувати два параметри: requestedToCapacityRatio та resources. Параметр shape в requestedToCapacityRatio дозволяє користувачу налаштувати функцію як найменш чи найбільш затребувані на основі значень utilization та score. Параметр resources охоплює як name ресурсу, що оцінюється, так і weight для кожного ресурсу.

Нижче наведено приклад конфігурації, яка встановлює поведінку пакування ресурсів intel.com/foo та intel.com/bar за допомогою поля requestedToCapacityRatio.

apiVersion: kubescheduler.config.k8s.io/v1
kind: KubeSchedulerConfiguration
profiles:
- pluginConfig:
  - args:
      scoringStrategy:
        resources:
        - name: intel.com/foo
          weight: 3
        - name: intel.com/bar
          weight: 3
        requestedToCapacityRatio:
          shape:
          - utilization: 0
            score: 0
          - utilization: 100
            score: 10
        type: RequestedToCapacityRatio
    name: NodeResourcesFit

Посилання на файл KubeSchedulerConfiguration з прапорцем kube-scheduler --config=/path/to/config/file передасть конфігурацію планувальнику.

Щоб дізнатися більше про інші параметри та їх стандартну конфігурацію, див. документацію API для NodeResourcesFitArgs.

Налаштування функції оцінювання

Параметр shape використовується для вказівки поведінки функції RequestedToCapacityRatio.

shape:
  - utilization: 0
    score: 0
  - utilization: 100
    score: 10

Вищезазначені аргументи надають вузлу score 0, якщо utilization дорівнює 0%, та 10 для utilization 100%, що дозволяє пакування ресурсів. Щоб увімкнути найменш затребувані значення оцінки, значення оцінки має бути оберненим наступним чином.

shape:
  - utilization: 0
    score: 10
  - utilization: 100
    score: 0

resources є необовʼязковим параметром, який типово має значення:

resources:
  - name: cpu
    weight: 1
  - name: memory
    weight: 1

Він може бути використаний для додавання розширених ресурсів наступними чином:

resources:
  - name: intel.com/foo
    weight: 5
  - name: cpu
    weight: 3
  - name: memory
    weight: 1

Параметр weight є необовʼязковим та встановлений у 1, якщо він не вказаний. Також, він може бути встановлений у відʼємне значення.

Оцінка вузла для розподілу потужностей

Цей розділ призначений для тих, хто бажає зрозуміти внутрішні деталі цієї функціональності. Нижче наведено приклад того, як обчислюється оцінка вузла для заданого набору значень.

Запитані ресурси:

intel.com/foo : 2
memory: 256MB
cpu: 2

Коефіцієнти ресурсів:

intel.com/foo : 5
memory: 1
cpu: 3

FunctionShapePoint {{0, 0}, {100, 10}}

Специфікація вузла 1:

Available:
  intel.com/foo: 4
  memory: 1 GB
  cpu: 8

Used:
  intel.com/foo: 1
  memory: 256MB
  cpu: 1

Оцінка вузла:

intel.com/foo  = resourceScoringFunction((2+1),4)
               = (100 - ((4-3)*100/4)
               = (100 - 25)
               = 75                       # запитано + використано = 75% * доступно
               = rawScoringFunction(75)
               = 7                        # floor(75/10)

memory         = resourceScoringFunction((256+256),1024)
               = (100 -((1024-512)*100/1024))
               = 50                       # запитано + використано = 50% * доступно
               = rawScoringFunction(50)
               = 5                        # floor(50/10)

cpu            = resourceScoringFunction((2+1),8)
               = (100 -((8-3)*100/8))
               = 37.5                     # запитано + використано = 37.5% * доступно
               = rawScoringFunction(37.5)
               = 3                        # floor(37.5/10)

NodeScore   =  ((7 * 5) + (5 * 1) + (3 * 3)) / (5 + 1 + 3)
            =  5

Специфікація вузла 2:

Available:
  intel.com/foo: 8
  memory: 1GB
  cpu: 8
Used:
  intel.com/foo: 2
  memory: 512MB
  cpu: 6

Оцінка вузла:

intel.com/foo  = resourceScoringFunction((2+2),8)
               =  (100 - ((8-4)*100/8)
               =  (100 - 50)
               =  50
               =  rawScoringFunction(50)
               = 5

memory         = resourceScoringFunction((256+512),1024)
               = (100 -((1024-768)*100/1024))
               = 75
               = rawScoringFunction(75)
               = 7

cpu            = resourceScoringFunction((2+6),8)
               = (100 -((8-8)*100/8))
               = 100
               = rawScoringFunction(100)
               = 10

NodeScore   =  ((5 * 5) + (7 * 1) + (10 * 3)) / (5 + 1 + 3)
            =  7

Що далі

Змінено August 27, 2024 at 9:57 PM PST: Removing the reviewers section from the front matter (81a711722d)